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Case History
Control of Blade-Shaft Coupled Vibration by Active Magnetic Bearing

Rotating 
machinery 

Control

A blade-shaft coupled rotor shown in Fig.1 was used. Eight blades, blade natural frequency
21.5 Hz, shaft natural frequency 12 Hz, and stagger angle 45 deg. The experiment was 
conducted in a vacuum. 

As indicated in Fig.2, unstable shaft vibrations occurred at around the rotational speed of
1,500 rpm during rotation tests, followed by such a large vibration as to cause contact with
the stator of the active magnetic bearing. Fig.3 shows the results of FFT of the blades and
the shaft before occurrence of vibration, while Fig.4 represents the measurement results
obtained immediately after occurrence of vibration. The vibrations of the shaft occurred at
9.5 Hz, while those of the blades at 35 Hz, respectively.

The vibrations in question were considered to be self-excited vibrations of the shaft
because they developed on the curves of the natural frequency of backward whirl. Thus, in
consideration of the possibility for insufficient blade damping and blade-shaft coupled 
resonance, several experiments were conducted.

・Air damping effect (Fig.5): Assuming that blade damping was insufficient in a vacuum, 
vacuum leak was tried after occurrence of self-excited vibrations to provide air damping,
but the vibrations did not cease as in Fig.5 bottom. 
・Vibration suppression by cross feedback (Fig.6): An experiment was made by
incorporating the cross feedback described in "v-BASE No.247" (1). Introducing the
backward cross feedback adjusted to the frequency of the self-excited vibration enabled to
settle the vibration, thus succeeding in attaining the rotational speed up to 2,400 rpm.
However, a complete solution was not achieved because manual synchronization of the
frequency (frequency of self-excited vibration) setting was required in accordance with 
increase in the rotational speed.
・Review of active magnetic bearing controller (Fig.7): In order to review the 
characteristics of the active magnetic bearing controller, the open loop characteristics were 
measured, which revealed a phase delay in the low frequency region.

・Re-adjustment of controller
The controller was re-adjusted by decreasing the cutoff frequency of the integrator (1st

order low pass filter). Fig.7 shows the result of another measurement of the open loop 
characteristics, indicating a phase lead to 7.5 Hz. The rotation test succeeded in reaching 
2,400 rpm (Fig.8). 

In designing an active magnetic bearing controller, special attention should be paid to
decrease in the backward natural frequency. This was experienced before (2), but was not
taken advantage of.

(1) "Stabilization Using Active Magnetic Bearings against Unstable Vibration of a Liquid
Containing Rotor", v-BASE Data Book 247
(2) Fujiwara, H.; Ito, M.; and Matsushita, O. "Rotational test of a Flexible Rotor Supported
by Active Magnetic Bearing", Iscorma-2 (2006)
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Fig.1: Experimental apparatus Fig.2: Campbell diagram (rotor vibration) 

AMB

Shaft displ.
pick-up

Ball bearing

Boss

Slip ring

Strain gauges for
blade vibration

Synchronous
motor

45°blade

Ω=1520 

Fig.3: Vibrations of blade and shaft 
(1,290 rps) 
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Fig.6: Cross feedback fc (for backward)
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Fig.7: Open loop characteristics 
of the controller  
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Fig.5: Blade vibration (vacuum leak) 
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Fig.4: Vibrations of blade and shaft
(1,520 rps)

Fig.8: Campbell diagram after improvement of controller 
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Vibration did not 
occur. 
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