目 次

第 1 章 材料力学を学ぶとは?	3・1・2 段付き棒の伸び	35
1・1 材料力学の目的1	3・1・3 断面が一様でない棒の伸び	36
1・1・1 材料力学と社会との繋がり1	3・1・4 物体力を受ける棒の伸び	37
1・1・2 材料力学とは2	3・2 静定と不静定	38
1・1・3 機械工学における材料力学の位置づけ3	3・3 重ね合わせの原理	41
1・2 本書の使い方3	3・4 熱応力	42
1・3 材料力学を学ぶために必要な基礎知識4	練習問題	45
1・3・1 力とモーメントの釣合い4	第 4 章 軸のねじり	47
1・3・2 拘束力とフリーボディダイアグラム4	4・1 ねじりの基本的考え方	
1・3・3 力の正の向き	4・2 軸の応力とひずみ	
1・3・4 引張試験6	4・2・1 軸の応力	
1・3・5 伸びと荷重の関係6	4・2・2 軸のねじれ角	
1・3・6 力と圧力7	4・2・3 軸径が変化する軸のねじり	
1・3・7 重ね合わせの考え方9	4・3 ねじりの不静定問題	
1・3・8 せん断の考え方10	4・4 円形断面以外の断面をもつ軸のねじり	
1・3・9 よく使う数学公式10	4・4・1 長方形断面軸のねじり	
1・3・10 微少量の扱い方10	4・4・2 楕円形断面軸のねじり	
1・3・11 変形図の表示上の注意11	4・4・3 薄肉開断面軸のねじり	
1・3・12 間違いやすい言葉や紛らわしい表現11	4・4・4 薄肉閉断面軸のねじり	
1・3・13 力学に関する問題の解き方12	練習問題	
1・3・14 単位について14	冰 日 川 烃	39
1・3・15 電卓による計算の注意点15	第 5 章 はりの曲げ	63
1・4 荷重の種類16	5・1 はり	63
1・4・1 作用による分類16	5・1・1 はりに加わる荷重の種類	63
1・4・2 分布様式による分類17	5・1・2 はりを支える方法	63
1・4・3 荷重速度による分類17	5・1・3 代表的なはりの解析モデル	64
練習問題17	5・2 せん断力と曲げモーメント	64
第 2 章 応力とひずみ	5・2・1 せん断力,曲げモーメントの求め方	65
2・1 応力とひずみの定義19	5・2・2 せん断力図と曲げモーメント図	66
2・1・1 荷重方向の応力とひずみ19	5・3 はりにおける曲げ応力	70
2・1・2 せん断方向の応力とひずみ22	5・3・1 曲げ応力と曲げモーメントの関係	····· 70
2・2 基本となる考え方23	5・3・2 中立軸と断面二次モーメント	72
2・3 応力-ひずみ線図24	5・4 曲げにおけるせん断応力	76
2・3・1 材料の力学的性質24	5・4・1 せん断応力の平均値	77
2・3・2 フックの法則26	5・4・2 長方形断面はりのせん断応力	····· 78
2・4 材料力学の問題の解き方27	5・4・3 任意形状断面のせん断応力	79
2・5 許容応力と安全率28	5・4・4 Ⅰ形断面はりのせん断応力	80
2 · 5 · 1 許容応力 · · · · · · · · · · · · · 28	5・5 はりのたわみ	81
2 · 5 · 2 安全率	5・5・1 曲げモーメントによるたわみ	81
練習問題30	5・5・2 せん断力によるたわみ	88
	練習問題	88
第 3 章 引張と圧縮33	第 6 章 はりの複雑な問題	02
3・1 棒の伸び33	第 6 早 は 9 00 後継 な 同題	
3・1・1 真直棒の伸び33	U・1 个肝化はり	93

6・1・1 重複積分法による解法93	9・2 ひずみエネルギーと補足ひずみエネルギー152
6・1・2 重ね合せ法による解法96	9・2・1 引張 (垂直応力, 垂直ひずみ)
6・2 特異関数による解法100	によるひずみエネルギー152
6・3 断面が不均一なはり103	9・2・2 せん断によるひずみエネルギー155
6・3・1 断面が不均一なはり103	9・2・3 軸のねじりによるひずみエネルギー155
6・3・2 平等強さのはり104	9・2・4 はりの曲げによるひずみエネルギー156
6・4 組合せはり105	9・2・5 ひずみエネルギーと
6・5 曲りはりの曲げ応力110	補足ひずみエネルギー157
6・6 連続はり113	9・3 衝撃荷重と衝撃応力158
練習問題116	9・4 相反定理とカスチリアノの定理160
	9・4・1 相反定理160
第 7 章 柱の座屈119	9・4・2 カスチリアノの定理161
7・1 安定と不安定119	9・5 仮想仕事の原理と
7・2 弾性座屈とオイラーの公式120	最小ポテンシャルエネルギー原理164
7・2・1 一端固定他端自由支持の長柱の座屈120	練習問題167
7・2・2 各種端末条件の座屈122	が 40 立 ほの母サーンラー・ こ)
7・3 長柱の座屈に関する実験公式126	第 10 章 骨組構造とシミュレーション169
7・3・1 ランキンの式126	10・1 トラスとラーメン169
7・3・2 ジョンソンの式127	10・1・1 トラス169
7・3・3 テトマイヤーの式127	10・1・2 ラーメン172
7・3・4 サウスウェル法128	10・2 マトリックス変位法174
練習問題129	10・2・1 剛性マトリックス175
第 8 章 複雑な応力131	10・2・2 1 次元トラス構造の剛性マトリックス…175
8・1 3次元の応力成分131	10・2・3 2次元トラス構造の剛性マトリックス…177
8・2 傾斜断面の応力132	10・3 有限要素法
8・2・1 種々の応力状態における傾斜断面の応力…132	10・3・1 数値シミュレーション手法181
8・2・2 主応力133	10・3・2 要素と節点
8・2・3 主せん断応力134	10・3・3 要素剛性方程式183
8・2・4 モールの応力円135	練習問題186
8・3 曲げ、ねじりおよび軸荷重の組合せ137	第 11 章 強度と設計189
8・4 圧力を受ける薄肉構造物139	11・1 材料力学と技術者倫理189
8・4・1 圧力を受ける薄肉円筒139	11・2 軸径の設計191
8・4・2 内圧を受ける薄肉球殻140	11・3 コイルばねの設計193
8・4・3 焼ばめ140	11・4 構成式195
8・5 3次元の応力状態141	11・5 降伏条件195
8・5・1 応力の釣合い式141	11・5・1 最大主応力説196
8・5・2 変位とひずみの関係142	11・5・2 最大せん断応力説196
8・5・3 主ひずみと主せん断ひずみ143	11・5・3 最大せん断ひずみエネルギ説196
8・5・4 応力とひずみの関係144	11・6 弾性設計と極限設計197
8・5・5 弾性係数間の関係145	11・6・1 不静定トラス197
8・5・6 体積弾性係数146	11・6・2 丸軸のねじり198
8・5・7 平面応力と平面ひずみ147	11・7 塑性曲げと極限荷重200
練習問題148	11・8 応力集中204
第 9 章 エネルギー法	11・8・1 円孔の応力集中204
9・1 ばねに貯えられるエネルギー	11・8・2 円弧切欠きの応力集中205
フェ 164GIC対 /C ライレジエイ//アイ1J1	練習問題205