第1章 材料力学を学ぶとは？ $\cdot 1$
$1 \cdot 1$ 材料力学の目的 $\cdot 1$
$1 \cdot 1 \cdot 1$ 材料力学と社会との繋がり 1
$1 \cdot 1 \cdot 2$ 材料力学とは $\cdot 2$
$1 \cdot 1 \cdot 3$ 機械工学における材料力学の位置づけ － 3
$1 \cdot 2$ 本書の使い方 － 3
$1 \cdot 3$ 材料力学を学ぶために必要な基礎知識 4
$1 \cdot 3 \cdot 1$ 力とモーメントの釣合い 4
$1 \cdot 3 \cdot 2$ 拘束力とフリーボディダイアグラム 4
$1 \cdot 3 \cdot 3$ 力の正の向き 6
$1 \cdot 3 \cdot 4$ 引張試験 6
$1 \cdot 3 \cdot 5$ 伸びと荷重の関係 6
$1 \cdot 3 \cdot 6$ 力と圧力 7
$1 \cdot 3 \cdot 7$ 重ね合わせの考え方 9
$1 \cdot 3 \cdot 8$ せん断の考え方 10
1•3•9 よく使う数学公式 10
$1 \cdot 3 \cdot 10$ 微少量の扱い方 10
$1 \cdot 3 \cdot 11$ 変形図の表示上の注意 11
$1 \cdot 3 \cdot 12$ 間違いやすい言葉や紛らわしい表現 11
$1 \cdot 3 \cdot 13$ 力学に関する問題の解き方 12
$1 \cdot 3 \cdot 14$ 単位について．． 14
$1 \cdot 3 \cdot 15$ 電卓による計算の注意点 15
$1 \cdot 4$ 荷重の種類 16
$1 \cdot 4 \cdot 1$ 作用による分類 16
$1 \cdot 4 \cdot 2$ 分布様式による分類 17
$1 \cdot 4 \cdot 3$ 荷重速度による分類 17
練習問題 17
第2章 応力とひずみ 19
$2 \cdot 1$ 応力とひずみの定義 19
$2 \cdot 1 \cdot 1$ 荷重方向の応力とひずみ 19
$2 \cdot 1 \cdot 2$ せん断方向の応力とひずみ 22
$2 \cdot 2$ 基本となる考え方 23
$2 \cdot 3$ 応力ーひずみ線図 24
$2 \cdot 3 \cdot 1$ 材料の力学的性質 24
$2 \cdot 3 \cdot 2$ フックの法則 26
$2 \cdot 4$ 材料力学の問題の解き方 27
2－5許容応力と安全率 28
$2 \cdot 5 \cdot 1$ 許容応力 28
$2 \cdot 5 \cdot 2$ 安全率 29
練習問題 30
第3章 引張と圧縮 33
$3 \cdot 1$ 棒の伸び 33
$3 \cdot 1 \cdot 1$ 真直棒の伸び 33
3•1•2段付き棒の伸び 35
$3 \cdot 1 \cdot 3$ 断面が一様でない棒の伸び 36
$3 \cdot 1 \cdot 4$ 物体力を受ける棒の伸び 37
$3 \cdot 2$ 静定と不静定 38
$3 \cdot 3$ 重ね合わせの原理 41
3•4 熱応力 42
練習問題 45
第4章 軸のねじり 47
$4 \cdot 1$ ねじりの基本的考え方 47
$4 \cdot 2$ 軸の応力とひずみ 48
$4 \cdot 2 \cdot 1$ 軸の応力 48
$4 \cdot 2 \cdot 2$ 軸のねじれ角 50
$4 \cdot 2 \cdot 3$ 軸径が変化する軸のねじり 51
$4 \cdot 3$ ねじりの不静定問題 52
4•4 円形断面以外の断面をもつ軸のねじり 55
$4 \cdot 4 \cdot 1$ 長方形断面軸のねじり 55
$4 \cdot 4 \cdot 2$ 楕円形断面軸のねじり 55
$4 \cdot 4 \cdot 3$ 薄肉開断面軸のねじり 56
$4 \cdot 4 \cdot 4$ 薄肉閉断面軸のねじり 57
練習問題 59
第5章 はりの曲げ 63
5•1はり 63
5•1•1 はりに加わる荷重の種類 63
5•1•2はりを支える方法 63
$5 \cdot 1 \cdot 3$ 代表的なはりの解析モデル 64
$5 \cdot 2$ せん断力と曲げモーメント 64
$5 \cdot 2 \cdot 1$ せん断力，曲げモーメントの求め方 65
$5 \cdot 2 \cdot 2$ せん断力図と曲げモーメント図 66
$5 \cdot 3$ はりにおける曲げ応力 70
$5 \cdot 3 \cdot 1$ 曲げ応力と曲げモーメントの関係 70
$5 \cdot 3 \cdot 2$ 中立軸と断面二次モーメント 72
$5 \cdot 4$ 曲げにおけるせん断応力 76
$5 \cdot 4 \cdot 1$ せん断応力の平均値 77
$5 \cdot 4 \cdot 2$ 長方形断面はりのせん断応力 78
$5 \cdot 4 \cdot 3$ 任意形状断面のせん断応力 79
$5 \cdot 4 \cdot 4$ I 形断面はりのせん断応力 80
5•5はりのたわみ 81
$5 \cdot 5 \cdot 1$ 曲げモーメントによるたわみ 81
$5 \cdot 5 \cdot 2$ せん断力によるたわみ 88
練習問題 88
第 6 章 はりの複雑な問題 93
$6 \cdot 1$ 不静定はり 93
$6 \cdot 1 \cdot 1$ 重複積分法による解法 93
$6 \cdot 1 \cdot 2$ 重ね合せ法による解法 96
$6 \cdot 2$ 特異関数による解法 100
6•3断面が不均一なはり 103
6•3•1 断面が不均一なはり 103
$6 \cdot 3 \cdot 2$ 平等強さのはり 104
$6 \cdot 4$ 組合せはり 105
6•5曲りはりの曲げ応力 110
6•6連続はり 113
練習問題． 116
第 7 章 柱の座屈 119
7•1 安定と不安定 119
7 •2弾性座屈とオイラーの公式 120
7•2•1—端固定他端自由支持の長柱の座屈 120
7•2•2各種端末条件の座屈 122
7 • 3 長柱の座屈に関する実験公式 126
$7 \cdot 3 \cdot 1$ ランキンの式 126
$7 \cdot 3 \cdot 2$ ジョンソンの式 127
7•3•3 テトマイヤーの式． 127
7•3•4 サウスウェル法 128
練習問題• 129
第8章 複雑な応力 131
$8 \cdot 13$ 次元の応力成分 131
$8 \cdot 2$ 傾斜断面の応力 132
$8 \cdot 2 \cdot 1$ 種々の応力状態における傾斜断面の応力• 132
8•2•2 主応力 133
8•2•3主せん断応力 134
8•2•4 モールの応力円 135
$8 \cdot 3$ 曲げ，ねじりおよび軸荷重の組合せ 137
8•4 圧力を受ける薄肉構造物 139
$8 \cdot 4 \cdot 1$ 圧力を受ける薄肉円筒 139
$8 \cdot 4 \cdot 2$ 内圧を受ける薄肉球殻 140
8•4•3焼ばめ 140
$8 \cdot 53$ 次元の応力状態． 141
$8 \cdot 5 \cdot 1$ 応力の釣合い式． 141
$8 \cdot 5 \cdot 2$ 変位とひずみの関係 142
8•5•3主ひずみと主せん断ひずみ 143
$8 \cdot 5 \cdot 4$ 応力とひずみの関係 144
$8 \cdot 5 \cdot 5$ 弾性係数間の関係• 145
$8 \cdot 5 \cdot 6$ 体積弾性係数 146
8•5•7平面応力と平面ひずみ 147
練習問題 148
第 9 章 エネルギ一法 151
9•1 ばねに貯えられるエネルギー 151
9•2 ひずみエネルギーと補足ひずみエネルギ 152
9•2•1 引張（垂直応力，垂直ひずみ）
によるひずみエネルギー 152
9•2•2 せん断によるひずみエネルギー 155
9•2•3軸のねじりによるひずみエネルギー 155
9•2•4 はりの曲げによるひずみエネルギー 156
9•2•5ひずみエネルギーと
補足ひずみエネルギー 157
9•3衝撃荷重と衝撃応力 158
9•4相反定理とカスチリアノの定理 160
9•4•1相反定理 160
9•4•2 カスチリアノの定理 161
9•5仮想仕事の原理と
最小ポテンシャルエネルギー原理 164
練習問題 167
第 10 章 骨組構造とシミュレーション 169
10•1 トラスとラーメン 169
$10 \cdot 1 \cdot 1$ トラス 169
$10 \cdot 1 \cdot 2$ ラーメン 172
10•2 マトリックス変位法 174
10•2•1剛性マトリックス 175
$10 \cdot 2 \cdot 21$ 次元トラス構造の剛性マトリックス $\cdots \cdot 175$
$10 \cdot 2 \cdot 32$ 次元トラス構造の剛性マトリックス $\cdots 177$
$10 \cdot 3$ 有限要素法 181
$10 \cdot 3 \cdot 1$ 数値シミュレーション手法 181
$10 \cdot 3 \cdot 2$ 要素と節点 － 182
10•3•3要素剛性方程式． 183
練習問題 186
第 11 章 強度と設計 189
11•1材料力学と技術者倫理 189
$11 \cdot 2$ 軸径の設計 － 191
$11 \cdot 3$ コイルばねの設計 193
11•4 構成式． 195
11•5降伏条件 195
$11 \cdot 5 \cdot 1$ 最大主応力説 196
$11 \cdot 5 \cdot 2$ 最大せん断応力説 196
11•5•3最大せん断ひずみエネルギ説 196
$11 \cdot 6$ 弾性設計と極限設計 197
$11 \cdot 6 \cdot 1$ 不静定トラス 197
$11 \cdot 6 \cdot 2$ 丸軸のねじり 198
11•7塑性曲げと極限荷重 200
$11 \cdot 8$ 応力集中 204
$11 \cdot 8 \cdot 1$ 円孔の応力集中 204
$11 \cdot 8 \cdot 2$ 円弧切欠きの応力集中 205
練習問題 205

