第1章 材料力学を学ぶとは？ 1
$1 \cdot 1$ 材料力学の目的 $\cdot 1$
$1 \cdot 2$ 本書の使い方 $\cdot 1$
1•3材料力学を学ぶために必要な基礎知識 2
1 •4 荷重の種類 10
練習問題 12
第2章 応力とひずみ 15
$2 \cdot 1$ 応力とひずみの定義 15
2 •2 基本となる考え方 18
$2 \cdot 3$ 応力 $-ひ す ゙ み$ 線図 19
2•4 材料力学の問題の解き方 22
2•5 許容応力と安全率 24
練習問題 26
第3章 引張と圧縮 29
$3 \cdot 1$ 棒の伸び 29
3•2 静定問題と不静定問題 33
$3 \cdot 3$ 重ね合わせの原理 35
$3 \cdot 4$ 熱応力 37
練習問題 39
第4章 軸のねじり 41
4•1 ねじりの基本的考え方 41
$4 \cdot 2$ 軸の応力とひずみ 41
4•3 ねじりの不静定問題 45
4•4 円形断面以外の断面をもつ軸のねじり 47
練習問題 49
第 5 章 はりの曲げ 51
5•1 はり 51
5•2 せん断力と曲げモーメント 52
5•3 はりにおける曲げ応力 55
5•4曲げにおけるせん断応力 58
5•5 はりのたわみ 60
練習問題 64
第 6 章 はりの複雑な問題 67
6•1 不静定はり 67
6•2 特異関数による解法 69
6•3 断面が不均一なはり 71
$6 \cdot 4$ 組み合せはり 73
6•5 曲りはりの曲げ応力 74
6•6 連続はり 76
練習問題 78
第7章 柱の座屈 81
7•1 安定と不安定 81
7•2 弾性座屈とオイラーの公式 81
7•3 長柱の座屈に関する実験公式． 87
練習問題 89
第 8 章 複雑な応力 91
8•1 3 次元の応力成分 91
$8 \cdot 2$ 傾斜断面の応力 92
8•3 曲げ，ねじりおよび軸荷重の組合せ 94
8•4 圧力を受ける薄肉構造物 95
$8 \cdot 53$ 次元の応力状態 96
練習問題 99
第 9 章 エネルギー法 101
9•1 ばねに貯えられるエネルギー 101
$9 \cdot 2$ ひずみエネルギーと補足ひずみエネルギー・•••• 101
$9 \cdot 3$ 衝撃荷重と衝撃応力 104
9•4 相反定理とカスチリアノの定理 106
9•5 仮想仕事の原理と
最小ポテンシャルエネルギー原理． 108
練習問題 111
第10章 骨組構造とシミュレーション 113
$10 \cdot 1$ トラスとラーメ 113
$10 \cdot 2$ マトリックス変位法 116
10•3 有限要素法 119
練習問題 122
第11 章 強度と設計 125
11•1 材料力学と技術者倫理 125
$11 \cdot 2$ 軸径の設計 126
$11 \cdot 3$ コイルばねの設計 127
11•4 構成式 129
11•5 降伏条件 130
$11 \cdot 6$ 弾性設計と極限設計 131
$11 \cdot 7$ 塑性曲げと極限荷重 134
11•8 応力集中 136
練習問題 137
練習問題解答 139
第1章 材料力学を学ぶとは 139
第 2 章 応力とひずみ 141
第3章 引張と圧縮 144
第4章 軸のねじり 148
第 5 章 はりの曲げ 150
第6章 はりの複雑な問題 158第7章 柱の座屈164
第8章 複雑な応力 167
第9 章 エネルギー原理170
第10章 骨組構造とシミュレーション 174
第 11 章 強度と設計 179

SUBJECT INDEX

索 引

代表的な断面形状と断面積，
断面二次モーメント，断面係数……‥付表（後 1）
はりのせん断力，曲げモーメント，
たわみ曲線，たわみ角 \qquad付表（後 2）

ギリシャ文字一覧

大文字	小文字	読み	英語表記
A	α	アルファ	alpha
B	β	ベータ	beta
Γ	γ	ガンマ	gamma
Δ	δ	デルタ	delta
E	ε	イプシロン	epsilon
Z	ζ	ズィータ	zeta
H	η	イータ	eta
Θ	θ	シータ	theta
I	l	イオタ	iota
K	κ	カッパ	kapa
Λ	λ	ラムダ	lamda
M	μ	ミュー	mu
N	v	ニュー	nu
Ξ	ξ	グザイ	xi
O	o	オミクロン	omicron
Π	π	パイ	pi
P	ρ	ロー	rho
Σ	σ	シグマ	sigma
T	τ	タウ	tau
Y	v	ウプシロン	upsilon
Φ	ϕ, φ	ファイ	phi
X	χ	カイ	chi
Ψ	ψ	プサイ	psi
Ω	ω	オメガ	omega

