TOPICS

超小型自律制御放電加工装置の開発

1. はじめに

放電加工では、電極と工作物の間に パルス状の電圧を印加し、電極と工作 物の間(極間)の任意位置で生じる単 発の放電を繰り返させることによっ て,材料除去が行われる.したがって、 加工速度を上昇させるためには、材料 除去に寄与する単発放電の単位時間当 たりの発生数を可能な限り多くする必 要がある.これを実現させるため、放 電加工機は、電極と工作物の距離(極 間距離)が常時適切な距離になるよう に、極間の電圧と電流の測定値をもと に電極の位置をフィードバック制御に

よって調整している.当然のことなが ら、このような制御系の構築には、極 間電圧・電流の測定器や電極位置の制 御機器などの装置が不可欠となる.

これに対し,筆者らのグループは, 測定器や制御機器などを必要とせず, 自律的に極間距離を制御することに よって放電加工を実現する超小型装置 の開発を目指し,極間距離自動制御機 構(Automatic Discharge Gap Controller: ADGC)を開発した.本稿で は, ADGC およびその小型化と性能 向上について紹介する.

2. ADGC の構造と動作

図1にADGCの基本構造と動作過 程を示す. この図に示すように, SMA (Shape Memory Alloy) 製のば ねとばね鋼製のバイアスばねが互いに 拮抗するように組み立てられている. このアクチュエータはバイアス式2方 向性素子と呼ばれ、その入力と出力は それぞれ SMA の温度昇降と軸の移動 である. ADGC は、その素子の軸に 電極が取り付けられ,かつ,放電加工 時に発生する電流が SMA を流れるよ うに設計されたものである.SMA は 通電加熱が可能であるため, 同図に示 す過程のように、電極の位置は自動的 かつ自律的に制御され、安定な放電加 工が実現される極間距離となるように 常に調整される. なお、この過程の実 現には、加熱・冷却時の SMA の温度 がその変態温度をまたぐように設計す る必要がある.

3. 試作機と改良機

試作機⁽¹⁾では、バイアス式2方向性 素子の SMA ばねとバイアスばねをそ れぞれ3本の引張コイルばねと1本の 圧縮コイルばねとしたため、複雑な設 計と困難な組立を余儀なくされた.こ の問題を解決するための改良を施し た. 図2(a) に改良機の構造を示す. 改良機⁽²⁾では、そのバイアス式2方向 性素子の SMA ばねとバイアスばねを それぞれ1本の圧縮コイルばねとして も、ADGCとしての機能を発現でき る設計解を見出して採用した. 図2(b) に試作機と改良機の外観比較を示す. 両図とも同じ縮尺であるため, 試作機 に比べて改良機が大幅に小型化された ことがわかる.

4. 改良機の性能検証実験

図3にADGCの極間距離制御性能 を検証する実験の方法を示す。図3(a) に示すように、ADGC を極間距離制 御機能を停止させた放電加工機の主軸 に取り付け,加工電圧の印加状態を維 持したまま,極間距離を放電が発生し ない最小距離とする.次に,図3(b) に示すように. 主軸を速度 v で距離 h だけ工作物の方向に移動させ停止させ る. すると、ADGCにより極間距離 は制御され、放電加工が開始される. その後, 図3 (c) に示すように, 深 さhの穴が加工され、放電加工が終了 する. このとき, ADGC が短絡せず に放電加工を完了できる接近距離の最 大値 h_{max} を, その ADGC の有する極 間距離制御性能の指標とした.

図4に試作機と改良機の h_{max} の比較 および電極の設計可動範囲に対する h_{max} の割合の比較を示す.接近速度vは1.2mm/minとした.試作機と改良 機の h_{max} はそれぞれ50 μ mと850 μ m となり、劇的に極間距離制御性能が向 上していることがわかる.また,設計 電極動作範囲はそれぞれ1000 μ mと 850 μ mであり、改良機が設計された 電極動作範囲の100%を使用できてい ることから、改良機が設計どおりに動 作していることがわかる.

5. おわりに

自律的に極間距離を制御することに より放電加工を実現する機構すなわち 極間距離自動制御機構(ADGC)の開 発およびその小型化と性能向上につい て紹介した.今後は、ADGCの各種 設計パラメータと動作特性や放電加工 特性の関係を明らかにすることによっ て、さまざまな用途に適した ADGC の設計製作方法および運用方法を提案 できるようなシステムを構築したいと 考えている.

(原稿受付 2010年1月26日) 〔石田 徹 大阪大学〕

- ●文 献
- (1)石田 徹・竹内芳美,自走式放電加工機構 による曲がり穴加工 一電極間距離の自動 制御機構一,精密工学会誌,65-2,(1999), 245-249.
- (2)北 正彦・石田 徹・寺本孝司・竹内芳美, 曲がり穴放電加工用マイクロロボットの開発 一極間距離自動制御機構の改良による 小型化と性能向上一,精密工学会誌,75-11 (2009),1355-1359.