内容へ移動
ユーザ用ツール
ユーザー登録
ログイン
サイト用ツール
検索
ツール
文書の表示
以前のリビジョン
バックリンク
最近の変更
メディアマネージャー
ログイン
ユーザー登録
>
最近の変更
メディアマネージャー
現在位置:
機械工学事典
»
計算力学
»
k
-
ε
モデル
この文書は読取専用です。文書のソースを閲覧することは可能ですが、変更はできません。もし変更したい場合は管理者に連絡してください。
====== <i>k</i>-<i>ε</i>モデル ====== ==== <i>k</i>-<i>ε</i> model ==== {{tag>..c01}} 渦粘性係数を,乱流エネルギー<i>k</i>とその散逸率<i>ε</i>で表す代表的な二方程式乱流モデル.レイノルズ応力\(\overline {{u_i}{u_j}} \)は,次式で表す.\[ - \overline {{u_i}{u_j}} = \nu_i \left( {\partial {{\bar U}_i}/\partial {x_j} + \partial {{\bar U}_j}/\partial {x_i}} \right) - 2{\delta _{ij}}k/3\]渦粘性係数<i>ν<sub>t</sub></i>は,乱れの速度を<i>k</i><sup>1/2</sup>で,乱れの空間スケールを<i>L<sub>e</sub></i>=<i>k</i><sup>3/2</sup>/<i>ε</i>で代表させ,\({\nu _t} = C\mu {k^{1/2}}Le = C\mu {k^2}/\varepsilon \)と置く.<i>k</i>と<i>ε</i>は次式から求める.\[\begin{array}{l} {D_k}/D\tau = {D_k} + {P_k} - \varepsilon \\ D\varepsilon /D\tau = {D_\varepsilon } + \left( {\varepsilon /k} \right)\left( {{C_{\varepsilon 1}}{P_k} - {C_{\varepsilon 2}}\varepsilon } \right) \end{array}\]ここで,\({D_k} = \partial \left[ {\left( {{\nu _t}/{\sigma _k}} \right)\partial k/\partial {x_j}} \right]/\partial {x_j}\)(拡散),\({P_k} = - \overline {{u_i}{u_j}} \partial {\bar U_i}/\partial {x_j}\)(生成),\({D_\varepsilon } = \partial \left[ {\left( {{\nu _t}/{\sigma _\varepsilon }} \right)\partial \varepsilon /\partial {x_j}} \right]/\partial {x_j}\)(拡散) 〔応力方程式モデル〕 ~~NOCACHE~~
ページ用ツール
文書の表示
以前のリビジョン
バックリンク
文書の先頭へ