ENGINEERING SOLUTIONS AND RECOMMENDATION FOR UN COP 15 The Strategy of JAPAN SOCIETY OF MECHANICAL ENGINEERS (ISME)

Mutsuhiro ARINOBU President of JSME

TARGETS

The most essential principle in engineering solutions and recommendation for UN COP 15 would be to do our best for reducing the emission of carbon dioxide not only in Japan but also all over the world. We should concentrate all our efforts on the research to realize challenging energy technologies, the development and the wide application of high efficiency energy systems, and the estimation and evaluation of future improvement of energy efficiencies and emerging technologies. Consequently, to produce various kinds of promising energy technologies, innovative improvement in the energy efficiency of the various energy systems and reliable estimation of financial payback period of energy systems would be our foremost targets to accelerate the prevention effect for global warming.

MEASURES

As the role of academic and engineering society of JSME, we should stress the following important activities: 1) For evaluating the technological innovation correctly in the near future, we should continue to make the engineering technological roadmaps (JSME Technology Roadmaps for Sustainable Society) and disseminate them to all over the world for promoting the necessary researches of challenging energy technology, for promoting quantitative discussions of energy usage and CO2 emissions and for accelerating the prevention effect for global warming. 2) We should produce the quantitative engineering data of energy usage and CO2 emission for promoting the discussion about the importance of various activities of our daily life and various kinds of engineering industries. 3) We should produce various kinds of quantitative CO2 emission reduction and the amount of energy saving and necessary total budget of energy policy.

Hence, we should contribute to reduce the amount of energy usage and the CO2 emission as much as possible by disseminating the JSME Technology Roadmap for Sustainable Society and related engineering data and economical estimations, which would be extremely useful measures for providing the engineering solutions and recommendations.

NEW FINDINGS

The systematic organization of JSME Technology Roadmaps for Sustainable Society by various engineering divisions of JSME has been produced over several years.

Two good results have been obtained in the discussions by combining the several technological roadmaps as the new findings.

1) Energy Usage and CO2 Emission Reduction for the Automobiles

According to the JSME Technology Roadmaps, there would be several improvement factors for the reduction of CO2. Fig.1 shows the specific strength of materials and new materials such as Aramic fiber would be useful for reducing the weight of automobiles. As shown in Fig.2, the thermal efficiency of engines has been increased gradually by many kinds of technological breakthrough. Furthermore, the average traveling speed has been increased by the improvement of traffic control technology. The total amount of CO2 reduction potential would be 100MT/year and the most effective method would be the increase of the traveling speed.

2) Energy Saving for Air-conditioning and Hot Water Supply by Utilizing High Efficiency Heat Pump Systems

Fig.3 showed the roadmap of heat pump hot water supply systems, which showed the COP of supplying hot water would have the value of 5 or higher. By considering the efficiency of electric power generation of about 40%, over twice of the total heat release by combustion would be useful for heating and hot water supply by utilizing high efficiency heat pump. Thus, the use of high efficiency compression heat pump systems would be effective for reducing the CO2 emission. The CO2 reduction potential by replacing the boiler, heater and absorption heat pumps would become the order of 200MT/year. This value would be over 10% of the total CO2 emission in Japan.

RECOMMENDATIONS

Our role would be to do our best for promoting energy saving and for reducing CO2 emissions, and therefore we recommend the following.

1) By utilizing our engineering specialty, we should produce the reliable technology roadmaps for estimating the future technological performance, for selecting the future energy and environmental policy and for accelerating the prevention effect for global warming.

2) By presenting the comprehensible engineering data of energy usage and CO2 emission in public, we should promote the quantitative discussion for accelerating the reduction of the CO2 emission which would assure enjoyable daily activities of members of our global community also in the future.

Fig.1 JSME Technological Roadmap for Specific Strength of Materials

Fig.2 JSME Technological Roadmap for Thermal Efficiency of Engines

Fig.3 JSME Technological Roadmap for Heat Pump Hot Water Supply System

(Trends of COP & Technical Breakthrough)

Appendix B: Data sheet for the climate plans						
Country:JAPAN	Population(2008) 127.8m	nillion, Area377,923km2,GD	P:4384billion\$			
			Baseline			
			2007	2015	2030	2050
GHG emissions	CO ₂					
(tons CO2-eq.)	Total		1,371MT			
GHG emissions by	Transportation fuels					
sector (tons CO2- eq.)	AUTOMOBILES					
	FIG.1	New Materials: such as	0%	0.35%	1.00%	1.30%
	_	Aramic Fiber (Specific				
		Strength Relative to Steel)				
		Weight Reduction[%]				
	Fig.2	Engine Thermal Efficiency	36%	37.20%	39.50%	42.50%
		(Gasoline Engine)				
		Average Traveling Speed	20km/b	20km/h	40km/b	50km/h
		hy Traffic Flow Control	2000	(20% Red	(30% Red	(40% Red
		Tecnology		(2070 RCC)	(0070 RCC)	of CO2)
		Estimated Total CO2	222MT	178MT	151MT	122MT
		Emission from				
		Automobiles				
				4.45.47	74N4T	400MT
		CO2 Reduction Potential		44M I	71MT	100M I
	Residential,					
	commercial and other					
	sources					
	HEAT PUMP HEATING	CO2 Reduction Potential		50%	100%	COP=6
	& HOT WATER			Replace	Replace	100%
	SUPPLY					Replace
				00147	001/7	
	Fig.3	Heat Pump Hot Water		33M I	66M I	77M1
		Supply (COP=5) for				
		nouses replacing boller				
		Loot Dump Hooting			51MT	FONT
		(COP-5) for Houses		201011	31111	391011
		replacing Boiler and Heater				
		Toplaoning Donor and Tioacor				
		Heat Pump Hot Water		17MT	34MT	39MT
		Supply (COP=5) for				
		Buildings replacing Boiler				
		and Heater				
		Heat Pump Heating &		20MT	40MT	47MT
		Cooling (COP=5) for				
		Buildings replacing Boiler				
		and Heater, Absorption				
		Heat Pump				
		Total CO2 Reduction		95MT	190MT	222MT
		Potential				
	Total		270MT	175MT	90MT	59MT
Energy intensity -	Total		2701011	1751011	001011	501011
total energy						
consumption per						
GDP (MJ/US \$)						