TOPICS

ソフトマター界面を支配する三つの分子間力の大規模 シミュレーション

1.はじめに

機械要素における潤滑の概念を発展 させて究極の摩擦制御を行ったり,あ るいは、生命のようにやわらかく高機 能な分子機械を成立させるためには, やわらかい物質(ソフトマター)の界 面において分子間に働く力の理解が不 可欠である.

その力の代表的なものは①ファンデ ルワールス (van der Waals) 力, ② 水素結合力。③長距離クーロン (Coulomb) 力である. 本稿では、そ れぞれの力が支配する系において、筆 者らが行った大規模分子シミュレー ションの事例を紹介する. これらの 力は 熱エルギーとの比で示すと原子 1対あたり順に1,10,100 kBT 程度 と1けたずつ強まり、分子間距離の -6, -2, -1 乗に比例して減衰し長 距離に及ぶ.

2. ファンデルワールス力

分子上の電子雲のゆらぎに起因し. すべての分子間に働く弱い力である が、分子上の電荷の偏りの小さい炭化 水素からなる潤滑油では支配力とな る.

トラクション式無段変速機で用いら れる潤滑油は、トラクションフルード と呼ばれる炭素数 20~ 30 程度の分子 であり、摺動面において高圧力下の油 膜を介して動力を伝達する役割を担 う. 高トラクション力を発現するフ ルード分子構造を探索するため,また, この潤滑状態である弾性流体潤滑の作 用機構解析のために,二つの固体原子 層に挟まれたフルード分子の高圧せん 断下の挙動を扱う分子動力学 (MD) シミュレータを作成した. 異なる分子 構造を持つ炭化水素系フルードにおけ る高トラクション発現機構を, 油膜中 の運動量移動の観点から明らかにし た⁽¹⁾. この手法により市販油の亜鈴型 分子の高トラクションを説明したのみ ならず、新規潤滑油分子を「設計」で きる段階が近づいた.

さらに, 空間的・時間的に大規模な 弾性流体潤滑油膜の MD を行った(図 1). 大規模並列化により, 実機械部品 の摺動部と同じサブµm スケールの油 膜厚さの全原子 MD を行い,通常の 連続体理論で用いられる非すべり境界 条件が原子レベルでも成り立つことを 実証するといった, ナノとマクロとを つなぐ解析が実現されつつある.

3. 水素結合力

水分子のように分子上の電荷が大き く分極している場合の結合である.

DLC(ダイヤモンドライクカーボ ン)膜は低摩擦化の表面処理として知 られているが、(株)豊田中央研究所 で開発された Si を含む DLC-Si 膜は通 常の DLC よりもさらに低摩擦を発現 する. 実験から, 表面に Si-OH (シラ ノール)基を生成し水を吸着すること との関連が示唆された. そこで, この 機構解析のために, Si-OH 基を有する 界面上の水分子層の MD を行ったと ころ、水素結合ネットワークによって 高圧・高せん断においても動的に安定 な水分子層が確認された⁽²⁾.これは, 従来の有機系単分子膜を越える境界潤 滑機能が水に存在する可能性を示すも のである.

4. 長距離クーロンカ

界面力の中で最も強く長距離まで到 達するイオンによる力である.

DNA や筋肉を構成する生体高分子, あるいは人工アクチュエータ用ゲル材 料などは、高分子上にリン酸基などの 塩基性あるいは酸性の部分を持ってお り、溶液中で解離し、一つの巨大なポ リイオンと、その周囲の低分子イオン によるイオン雰囲気を形成する(図 このような系の現象を追跡するた めには、系のすべての原子の運動を追 跡するのではなく,溶媒を連続体とし て扱い、イオンのブラウン運動を追跡 する粗視化計算法が適切である. その ために、モンテカルロ法を拡張したモ ンテカルロブラウン動力学法を開発 し、100nm オーダーの空間における イオン雰囲気の静的構造とゆらぎとを 関連づけることにより,従来凝縮相(図 2の(a))の現象とされた対イオン分 極は、実は散慢相(図2の(b))の寄 与も含めてはじめて説明できることを 示し、半世紀に及ぶ混乱を解決した⁽³⁾. 5.まとめ

計算機の発展および計算手法の工夫 により, サブµmの界面の動的な計算

により、摩擦係数やイオン分極率と いった巨視的な力学的. 電気的特性を 分子レベルから説明することが可能と なった. 今後の課題は, 巨視的な計算と の連成手法の構築、ナノレベルの現象 の素過程を実験的に検証する方法の充 実などであろう.近い将来,計算機上 で三つの力を適切に使い分けた理想の 摺動面や、やわらかい分子機械の自由 な設計が実現されることを期待する. (原稿受付 2007年9月6日)

〔鷲津仁志 (株)豊田中央研究所〕

●文 献

用)

- (1) Washizu, H.・ほか, A Molecular Dynamics Analysis of the Traction Fluiols, SAE Paper, (2007), 2007-01-1016.
- (2) 鷲津・ほか、トライボロジー会議予稿集 東 京 2007 (2007-5), 163-164.
- (3) Washizu, H. and Kikuchi, K., J. Phys. Chem. B, 110-6 (2006), 2855-2861.