TOPICS

固体酸化物形燃料電池(SOFC)のマクロ反応場の研究開発

1. はじめに

1839年の Grove 卿による希硫酸電 解質の燃料電池の成功後, 1853年に はガラスや磁器を電解質とした, 固体 酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)の原型が提案されてい る. 1897 年には Nernst ランプが発明 され、固体酸化物フィラメント中での イオン伝導も見出されている. 爾来. SOFC は平板型,円筒型,円筒平板形 等さまざまな形状で開発されてきてい SOFC は高温作動により、貴金属 る 触媒なしでも十分な電気化学反応速度 で内部抵抗を低く抑えての高効率発電 が可能であり、水素に加え都市ガス、 LPG. 灯油等の炭化水素の改質燃料も 比較的容易に使用できる燃料選択の自 由度も高く. 良質な高温排熱を有効利 用できる高効率コージェネレーション 機器でもあることから、家庭用、業務 用,産業用電源として注目されている. これまで、電解質、電極材料等の要素 技術について活発に研究開発が行われ てきており、今後市場への SOFC シ ステムの本格的な投入が加速する段階 となって, 単電池 (セル) を数十~数百 個直列および並列に接続し所定の電力 を得る、システムとしてのさらなる高 効率化や耐久性向上が求められている.

本稿では、要素技術とシステム開発 の橋渡しとなるような機械工学的観点 から, SOFC のマクロ反応場の分布す なわちセル全体の電流(発電)分布と それに起因する温度分布の研究および マクロ反応場を三次元的に拡大する燃 料極支持型ハニカム構造を有する SOFC の研究開発を紹介したい

2. SOFC の電流分布および温 度分布

SOFC では、発電中の燃料ガス組成 の分布により, 電極全体が有効利用さ れず, また炭素析出による燃料極触媒 性能低下や温度分布による熱応力に伴 う熱機械的劣化が生じる。触媒が酸化 還元により膨張収縮を繰り返し、セル の亀裂や、触媒微粒子のネットワーク 切断による内部抵抗増大も進行する

本研究では、実測に基づく研究例が 非常に少ない SOFC の電流分布を. 直接計測により得るため、燃料極(-極)を支持体として電解質を塗布,焼 成後,空気極材料(+極)を3分割し て塗布し焼成したマイクロ円筒型セル を作製している (図1). 単セルの電 流電圧特性を模擬し, 各分割電極を等 電位に保ちながら制御することで、電 流分布の計測に成功し,燃料流れ下流 方向に, 燃料欠乏に起因する電流の減 少が観測できた(図1)⁽¹⁾.温度分布 と電流分布の理論的な相関について, 発電中の内部抵抗による電極電位の低 下分(過電圧)に伴う不可逆的な発熱 量と可逆的エントロピー収支による熱 の出入りを考慮した.後者は,電気化

学反応による電流に伴って熱輸送が起 きる電気化学ペルチェ効果とも言え, 熱力学データから得られる⁽²⁾. 227 熱伝導方程式を適用するとセル内の温 度と電流の関係式が得られる.水素供 給の場合,各部電流・温度の実測から, シンプルなモデルでもこの関係式の妥 当性が得られた.よって,発電中のセ ル温度分布測定による電流分布解析法 や実用システム用の電流分布診断法が 開発できるのではないかと考えてい る. 目下, 本手法を, 都市ガス供給を 想定し改質メタン燃料供給時の電流分 布および温度分布計測に展開してお り、吸熱反応による温度低下を考慮す ることで、セル下流域で生成水増加や 燃料中水素の消費によると考えられる メタン水蒸気改質の促進傾向が得られ ている

燃料極支持型ハニカム構造 З. を有する SOFC

1980年代よりハニカム支持構造の SOFC は提案されてきているが、本研 究では高出力が期待できるものの従来 発電試験例のなかった,多孔質燃料極 を支持体とするハニカムセルの発電特 性と流路配置との相関を調べている. 流路配置による最大出力の違いが観測 され,有限要素法シミュレーションに

よる考察から,図2 (a) のような比 較的疎な燃料流路配置では(b)のよ うな密な配置に比べ,1流路当たりの 燃料分配量を増加させやすくなること で十分な反応場が形成される傾向が得 られた⁽³⁾. また (a) のセルでは, 同 材料,同作製法のマイクロ円筒型燃料 極支持型セルに比べ、同燃料利用率に おいて,5倍以上の最大体積出力密度 が得られた、水素ガスが多孔質燃料極 中を燃料流路から主に拡散によって広 がり、反応場がハニカムセル中に拡張 されるためと考えられる. スケール アップしたモデルにおいても同様に. マクロ反応場を拡大するために、多孔 質ハニカム電極が有効であるととも に、流路配置の最適化により反応場を 十分に確保することが可能となる. (原稿受付 2014年6月10日) 〔中島裕典 九州大学〕

献

- (1)Shimizu, A., Nakajima, H. and Kitahara, T., Current Distribution Measurement of a Micontubular Solid Oxide Fuel Cell, ECS Transactions, 57-1 (2013),727.
 (2) Nakajima, H., Mass Transfer-Advanced Aspects, (2011), Chapter 12, InTech.
- (3)Kotake, S., Nakajima, H., and Kitahara, T., Flow Channel Configurations of an Anode-Supported Honeycomb Solid Oxide Fuel Cell. ECS Transactions. 57-1 (2013), 815.