Improvement for Strength of Cu-Ti Based Composites Containing Graphite Particles Fabricated by Centrifugal Mixed-Powder Method

○学 茅野 智昭（名工大院） 正 佐藤 尚（名工大）
正 瀬辺 義見（名工大）

Tomouki KAYANO, Hisashi SATO and Yoshimi WATANABE
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan

Key Words: Centrifugal mixed-powder method (CMPM), Centrifugal casting, Composite, Aging, Self-lubrication material, Wear

1. Introduction

Bearings are often used for rotary or reciprocating portions in order to prevent energy loss due to friction. Materials used for the bearings are Fe and Cu alloys\(^{1,2}\). The self-lubrication materials have been proposed as one improving method for lubrication between the bearing components\(^{3,5}\). These materials are metal-based composites containing solid-lubricant particles such as graphite and molybdenum disulfide, and these are usually fabricated by sintering\(^{4}\). However, since many of the bearing-parts are fabricated by centrifugal casting, processing method of the self-lubrication materials using centrifugal casting is demanded.

Parts of authors have recently developed Cu-based composites containing graphite particles by centrifugal mixed-powder method (CMPM)\(^{5}\). The CMPM is a casting method in which a combination of centrifugal casting and powder metallurgy\(^{6}\). Moreover, they have reported that it is possible to improve the wear resistance of Cu-based composites containing graphite particles by Ti addition into Cu matrix\(^{7}\). Also aging treatment of Cu/Ti-based composites containing graphite particles has never been carried out\(^{5}\) although the Cu-Ti alloy is age-hardened alloy\(^{8}\).

In this study, the Cu/Ti-based composites containing graphite particles have been fabricated by the CMPM, and then aging treatment for this composites is performed. Hence, it is expected that strength of the Cu/Ti-based composites containing graphite particles fabricated by the CMPM can be improved by aging treatment.

2. Experimental Procedure

Cu/Ti-based composites containing graphite particles were fabricated by the CMPM. At first of all, three kinds of mixed-powders of Cu powder (25 μm), Ti powder (32 μm or less) and graphite powder (50 μm) were prepared. Volume fraction of graphite in these mixed-powders was 25 vol.%. After that, the mixed-powder was inserted into mold, and subsequently centrifugal force was induced for the mold after melting Cu ingot. The centrifugal force was 35 G. Table 1 shows the casting conditions of the composites. Using vacuum furnace, solution treatments of the Cu/Ti-based composites containing graphite particles were performed at 950 °C for 48 h and aging treatments of them were performed at 400 °C for 1 ~ 4 h. Microstructural observations were made by a scanning electron microscope (SEM) for the heat-treated Cu/Ti-based composites. Moreover, micro-Vickers hardness tests were carried out for the composites. Movement type of friction wear test is a linear reciprocating motion. Table 2 shows the condition of the friction wear test. Changes in the coefficient of friction during the test were investigated by calculating the friction factor from the measured friction force.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Heating temperature (℃)</th>
<th>Weight of mixed-powder (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-2.5at.%Ti</td>
<td>1250</td>
<td>11.7</td>
</tr>
<tr>
<td>Cu-3.0at.%Ti</td>
<td>1250</td>
<td>11.6</td>
</tr>
<tr>
<td>Cu-5.0at.%Ti</td>
<td>1280</td>
<td>11.5</td>
</tr>
</tbody>
</table>

3. Results and Discussion

Cu/Ti-based composites containing graphite particles are successfully fabricated by the CMPM. Micro-Vickers hardness as a function of aging time is shown in Fig. 1. From this figure,
hardness of the composites becomes maximum by aging treatment at 400 °C for 3 h. Figure 2 is a backscatter electron compositional image of Cu-5.0at.%Ti sample aged at 400 °C for 3 h. From the image, some TiC phases are observed at interface between Cu/Ti matrix and graphite particle in the aged Cu/Ti-based composite containing graphite particles. Because of this, it is considered that bonding strength between matrix and graphite would be improved by formation of TiC. The Cu$_4$Ti phase cannot be observed in Fig. 2, although Cu$_4$Ti phase is usually formed by aging treatment for Cu-Ti alloy. However, since correct age-hardened curves are obtained, very fine Cu$_4$Ti would be formed during aging treatment.

Table 3 is results of wear tests for Cu-2.5at.%Ti alloy without graphite addition and Cu-2.5at.%Ti sample. It is seen that the Cu-2.5at.%Ti sample has lower frictional coefficient and higher wear resistance. Therefore, aging treatment for the Cu/Ti-based composites containing graphite particles is effective method to improve their mechanical properties.

Table 3 Wear properties of Cu-2.5at.%Ti alloy and Cu-2.5at.%Ti sample

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Frictional coefficient</th>
<th>Cross-sectional area of wear groove [mm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-2.5at.%Ti alloy</td>
<td>1.06</td>
<td>0.047</td>
</tr>
<tr>
<td>Cu-2.5at.%Ti sample</td>
<td>0.26</td>
<td>0.019</td>
</tr>
<tr>
<td>(containing graphite)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Conclusions

The Cu/Ti-based composites containing graphite particles are successfully obtained by the CMPM. Hardness of the composites becomes maximum by aging treatment at 400°C for 4 h. Moreover, TiC phase is observed in the aged Cu/Ti-based composites containing graphite particles. From the obtained results, it is found that aging treatment is effective to improve mechanical properties of the Cu/Ti-based composites containing graphite particles.

Acknowledgement

This work was supported from Matching Planner Program by Japan Science and Technology Agency. This financial support was gratefully acknowledged.

References